

1. Radial expressions with more than one term are multiplied in much the same way that polynomials with more than one term are multiplied.

Example 1

$\sqrt{5}(\sqrt{2}+\sqrt{5})$
$\sqrt{10}+\sqrt{25}$
$\sqrt{10}+5$

Example 2
$(2+\sqrt{3})(4+5 \sqrt{3})$
$2 \cdot 4+2(5 \sqrt{3})+4 \sqrt{3}+\sqrt{3}(5 \sqrt{3})$
$8+10 \sqrt{3}+4 \sqrt{3}+15$
$23+14 \sqrt{3}$

Student Practice:
$(\sqrt{2}+7)(6 \sqrt{2}+3)$

Rationalizing the Denominator
The process of rewriting a radical expression as an equivalent expression in which the denominator no longer contains any radicals is called rationalizing the denominator.

1. If the denominator contains a square root of a natural number that is not a perfect square, multiply the numerator and the denominator by the radical.

Example 1

$\overline{\sqrt{v}} \sqrt{\sqrt{v}}$

$\sqrt{ }$

If the denominator contains two terms, rationalize the denominator by multiplying the numerator and the denominator by the conjugate of the denominator.

